

Taller de Matemática

Guía n° 5 de Ejercicios de Prueba de TRANSICION "RAICES"

Unidad: Números

Nivel: CUARTOS MEDIO

Nombre:	Curso
Objetivo. Resuelven Operaciones en el conjunto de los números Reales	· · · · · · · · · · · · · · · · · · ·
Desarrollan problemas que involucren el conjunto de los números ente reales en diversos contextos.	
Encierre con un círculo la alternativa correcta, previamente realizando los cál	culos frente a cada ejercicio dado
1)	
$\sqrt{12} - \sqrt{2} + \sqrt{8} - \sqrt{3} =$	
A) $\sqrt{3} + \sqrt{2}$	
B) $\sqrt{15}$	
C) √10 + √5	
 D) √20 − √5 E) Ninguno de los valores anteriores 	
2)	
Si $\sqrt{2} = a$, $\sqrt{3} = b$ y $\sqrt{5} = c$, entonces ¿cuál(es) de las expresiones siguientes equivalentes a $\sqrt{60}$?	
equivalentes a voo:	(DEMPIE 2005)
I) 2bc	
II) $\sqrt{a^4b^2c^2}$	
III) $\sqrt{a^2bc}$	
A) Solo I	
B) Solo II	
C) Solo III	
D) Solo I y II	
E) Solo I y III	
3)	
$\frac{\sqrt{5^5 + 5^5 + 5^5 + 5^5 + 5^5}}{\sqrt[3]{5^5 + 5^5 + 5^5 + 5^5 + 5^5}} =$	
A) 5	
B) 5 g	
C) 1	
D) $5\frac{2}{3}$	
E) $5^{\frac{3}{2}}$	
4)	
Al simplificar la expresión $\frac{2\sqrt{7}+\sqrt{14}}{\sqrt{7}}$ resulta	
A) 2√3	
B) 2 + √14	
C) $2 + \sqrt{2}$	
D) $2\sqrt{7} + \sqrt{2}$	
E) 4	

- $\sqrt{(0,25)^{1-a}} =$
- A) $\left(\frac{1}{2}\right)^{-a}$
- B) $\left(\frac{1}{2}\right)^{1-a}$
- C) $\left(\frac{1}{2}\right)^{-\frac{a}{2}}$
- D) $\left(\frac{1}{2}\right)^{\frac{a}{2}}$
- E) $\left(\frac{1}{2}\right)^a$

6)

- A) 0
- B) $\frac{3}{2\sqrt{2}}$
- C) 6-9√2
- E) $\frac{6-3\sqrt{2}}{2}$

7)

- Si $\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}=t$, entonces el valor de t^2-2 es
- A) $2\sqrt{3}-2$
- B) 0
- C) 2√3
- D) 2
- E) -2

8)

- $\sqrt{6+\frac{1}{4}}-\sqrt{5+\frac{1}{16}}+\sqrt{8-\frac{4}{25}}=$
- A) $\frac{61}{20}$ B) $\frac{\sqrt{7}}{2} \frac{\sqrt{6}}{4} + \frac{2}{5}$ C) $\frac{151}{20}$
- D) $\sqrt{6} \sqrt{5} + \sqrt{8} + \frac{7}{20}$
- E) Ninguno de los valores anteriores.

9)

- $\sqrt[3]{a^{2x+2}} \cdot \sqrt[3]{a^{x+1}} =$
 - A) a^{3x+3}
 - B) ⁶√a^{3x+3}
 - C) a^{3x}
 - D) a^{x+3}
 - E) a^{x+1}

¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s) cuando la variable x toma los tres valores 0, 1, -1?

- $1) \sqrt{x^2} = -x$
- II) $\sqrt{x^2} = |x|$
- III) $\sqrt{x^2} = x$
- A) Solo I
- B) Solo II
- C) Solo III
- D) Solo I y III
- E) Ninguna de ellas.

11)

 $(5\sqrt{2} - \sqrt{3})(\sqrt{3} + 5\sqrt{2}) =$

- A) -25√5
- B) 24√5
- C) 7
- D) 47
- E) 0

12)

. ³√a^{6n–6} =

- A) a²ⁿ⁻⁶
- B) a²ⁿ⁻²
- C) a¹/_{2n-2}
- D) a¹/_{2n-6}
- E) a⁶ⁿ⁻²

13)

Para todo m > 0 la expresión $\sqrt[3]{m^4} \cdot \sqrt[3]{m^2} \cdot \sqrt{m}$ es igual a

- A) m
- B) ⁸√m⁷
- C) √m⁵
- D) ⁵√m⁷
- E) ⁶√m⁷

14)

La expresión $\sqrt[3]{a^2}$: $(\sqrt[3]{a})^{-1}$ es equivalente a

- A) ³√a
- B) $\frac{1}{a}$
- C) -1
- D) −³√a
- E) a

$$\sqrt{0,4} \cdot \frac{x^{\frac{2}{3}}}{\sqrt[3]{x}} =$$

A)
$$0.2 \cdot x$$

B) $\frac{2}{3} \cdot x^{\frac{1}{3}}$

C)
$$\sqrt{\frac{4}{10}} \cdot x^{\frac{1}{3}}$$

D) 0,\overline{2} \cdot x^\frac{1}{3}

E)
$$\frac{2}{3} \cdot x$$

16)

¿Cuál de las siguientes igualdades es verdadera?

A)
$$\sqrt[3]{4} = \sqrt[3]{2}$$

C)
$$\sqrt{10} - \sqrt{6} = 2$$

D)
$$\frac{\sqrt{6}}{\sqrt[3]{2}} = \sqrt{3}$$

E)
$$\sqrt{(-1)^2} = -1$$

17)

¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?

I)
$$(\sqrt{3} + 4)^2 = 19$$

II)
$$\sqrt{\sqrt{5}+1} \cdot \sqrt{\sqrt{5}-1} = 2$$

III)
$$\frac{2\sqrt{50} + 4\sqrt{18}}{\sqrt{8}} = 11$$

- A) Solo I
- B) Solo II
- C) Solo III
- D) Solo II y III
- E) I, II y III

18)

$$(1-\sqrt{2})^2 =$$

A)
$$3 - 2\sqrt{2}$$

- B) 3
- C) -1
- D) -1-2√2

Si a, b, n y p son números reales positivos, entonces $\sqrt[b]{a^n} \cdot \sqrt[n]{p^b}$ es igual a

- A) ap
- B) $(ap)^{\frac{n^2+b^2}{nb}}$
- C) $\sqrt[bn]{a^{n^2}p^{b^2}}$
- D) $\sqrt[bn]{(ap)^{n+b}}$
- E) ninguna de las expresiones anteriores.

20)

 $\sqrt{(-4)^{-2}} =$

- A) √8
- B) $-\frac{1}{4}$
- C) $\frac{1}{4}$
- D) -4
- E) 4